The US Navy’s Dual Band Radars

CVN 78 timelines

CVN 78 delays
(click to view full)

July 23/20: USS Jack H. Lucas Raytheon announced Tuesday that it has delivered the first AN/SPY-6(V)1 radar array to Huntington Ingalls for installation on the Navy’s future USS Jack H. Lucas guided-missile destroyer. “SPY-6 will change how the Navy conducts surface fleet operations,” said Capt. Jason Hall, program manager for Above-Water Sensors for the US Navy’s Program Executive Office for Integrated Warfare Systems in a press release. The first 14-foot-by-14-foor modular array was transported from Raytheon’s Radar Development Facility in Andover, Mass., to the Huntington Ingalls shipyard in Pascagoula, Miss., company officials said. In November 2019, Raytheon received a $97.3 million contract modification for integration and maintenance of the AN/SPY-6(V) air and missile defense radar system on Navy vessels.

For more on this and other stories, please consider purchasing a membership.
If you are already a subscriber, login to your account.
DBR on CVN-21 (click to view full) The US Navy’s newest light cruiser and aircraft carrier designs offer a wide array of new technologies. One is the Dual-Band Radar (DBR) system, which can be scaled up or down for installation in the new DDG-1000 Zumwalt Class “destroyers”, and the CVN-21 Gerald R. Ford Class aircraft carriers. The DBR concept involves a significant change from current naval design approaches, and that change is not without risk. The USA’s GAO audit office remains concerned that key tests may not happen before the radar is installed on new ships, and any more development or testing snags could put much larger programs at risk. In April 2009, a successful full-power “lightoff” of both DBR radars was encouraging, but 2010 saw a major program shift. Sharp drops in the planned number of DDG-1000 destroyer created a per-ship cost crisis. Part of the response involved a shift to a single X-band SPY-3 radar for the Zumwalt Class, leaving DBR as a dual-band SPY-3/ SPY-4 solution only on America’s new carriers. DBR: Concept and Comparisons CG-47 antennas (click to view full) At present, the radars used for scanning large areas and for focused targeting are completely separate […]

CVN-21 island

DBR on CVN-21
(click to view full)

The US Navy’s newest light cruiser and aircraft carrier designs offer a wide array of new technologies. One is the Dual-Band Radar (DBR) system, which can be scaled up or down for installation in the new DDG-1000 Zumwalt Class “destroyers”, and the CVN-21 Gerald R. Ford Class aircraft carriers.

The DBR concept involves a significant change from current naval design approaches, and that change is not without risk. The USA’s GAO audit office remains concerned that key tests may not happen before the radar is installed on new ships, and any more development or testing snags could put much larger programs at risk. In April 2009, a successful full-power “lightoff” of both DBR radars was encouraging, but 2010 saw a major program shift. Sharp drops in the planned number of DDG-1000 destroyer created a per-ship cost crisis. Part of the response involved a shift to a single X-band SPY-3 radar for the Zumwalt Class, leaving DBR as a dual-band SPY-3/ SPY-4 solution only on America’s new carriers.

DBR: Concept and Comparisons

CG-47 antennas

CG-47 antennas
(click to view full)

At present, the radars used for scanning large areas and for focused targeting are completely separate pieces of equipment, that are only integrated by the ship’s combat system. The DBR will break from that approach by combining 2 different radar antennas, with the same back-end radar electronics and software driving both. The ship’s combat system will receive a single stream of data, and the radar itself will be able to mix and match its antennas as the situation requires. At the design tier, this approach allows fewer radar antennas, all flush-mounted with the superstructure for maximum stealth. At the tactical tier, integration at the radar level offers faster response time, faster adaptation to new situations, and better utilization of the ship’s power, electronics, and bandwidth. At the life-cycle maintenance tier, it allows one-step upgrades to the radar suite as a whole.

The tactical difference is easier to understand by comparing the present American state of the art with the DBR approach. The US Navy’s DDG-51 Arleigh Burke Class AEGIS destroyers and CG-47 Ticonderoga Class cruisers currently form the high end of its naval air defense capabilities. They use 2-4 different radars in their work, which are combined into a common picture by the ships’ AEGIS combat system.

The rotating AN/SPS-49 radar on the cruisers’ mast offers 2D (range and heading only) very long-range scans in the L-band. It serves as the primary air search radar aboard a wide array of ship types, from aircraft carriers to frigates, and is also used by CG-47 Ticonderoga Class cruisers.

SPY-1 variants

AEGIS operations
(click to view full)

AEGIS ships have a more effective radar at their disposal, however: the AN/SPY-1B/D/E passive phased array S-band radar can be seen as the hexagonal plates mounted on the ship’s superstructure. SPY-1 has a slightly shorter horizon than the SPS-49, and can be susceptible to land and wave clutter, but is used to search and track over large areas. It can search for and track over 200 targets, providing mid-course guidance that can bring air defense missiles closer to their targets. Some versions can even provide ballistic missile defense tracking, after appropriate modifications to their back-end electronics and radar software.

The 3rd component is the AN/SPG-62 X-band radar “illuminators,” which designate targets for final intercept by air defense missiles; DDG-51 destroyers have 3, and CG-47 cruisers have 4. During saturation attacks, the AEGIS combat system must time-share the illuminators, engaging them only for final intercept and then switching to another target.

In an era of supersonic anti-ship missiles that use final-stage maneuvering to confuse defenses, and can be programmed to arrive simultaneously, this approach is not ideal.

The US Navy’s Dual-Band Radar relies on products from 2 different manufacturers, but they’re integrated in a different way. They also use a different base technology. The use of active-array, digital beamforming radar technology will help DBR-equipped ships survive saturation attacks. Their most salient feature is the ability to allocate groups of emitters within their thousands of individual modules to perform specific tasks, in order to track and guide against tens of incoming missiles simultaneously. Active array radars also feature better reliability than mechanically-scanned radars, and recent experiments suggest that they could have uses as very high-power electronic jammers, and/or high-bandwidth secure communications relays.

Many modern European air defense ships, from the British Type 45 destroyers, to the Franco-Italian Horizon destroyers and FREMM frigates, to Dutch/German F124 frigates, use active array search and targeting radars.

SPY-3 operates

DBR operations
(click to view full)

Raytheon’s X-band, active-array SPY-3 Multi-Function Radar (MFR) offers superior medium to high altitude search performance over other radar bands, and its pencil beams give it an excellent ability to focus in on targets. SPY-3 will be the primary DBR radar used for missile engagements, and the only radar equipping the new Zumwalt Class destroyers. That will require additional programming, in order to give the radar volume search capabilities as well. Many anti-ballistic missile radars are X-band, and the SPY-3 could also be adapted for that role with the same kinds of software/hardware investments that some of the fleet’s S-band, passive phased array SPY-1s have received.

On surface combatants, the AN/SPY-3 would also replace the X-band AN/SPQ-9 surface detection and tracking radar that is used to guide naval gunfire, and even track the periscopes of surfacing submarines. On carriers, it will take over functions formerly handled by AN/SPN-41 and AN/SPN-46 PALS air traffic radars, and would work in conjunction with the new GPS-derived Joint Precision Approach Landing System (JPALS).

Lockheed Martin’s SPY-4 Volume Search Radar (VSR) will be the 2nd radar band on America’s new carriers. It’s an S-band active array antenna, rather than the SPY-1’s S-band passive phased array. The Navy was originally going to use the L-band/D-band for the DBR’s second radar, but Lockheed Martin had been doing research on an active array S-band Advanced Radar (SBAR) that could potentially replace SPY-1 radars on existing AEGIS ships. A demonstrator began operating in Moorestown, NJ in 2003. That same year, its performance convinced the Navy to switch to S-band, and to make Lockheed Martin the DBR subcontractor for the volume search radar (VSR) antenna. It also convinced Lockheed Martin to continue work on the project as a complete, integrated radar, now known as “S4R”.

S-band offers superior performance in high-moisture clutter conditions like rain or fog, and is excellent for scanning and tracking within a very large volume. While Lockheed Martin makes the VSR antenna, the dual-band approach means that Raytheon is responsible for the radars’ common back-end electronics and software.

The VSR/S4R’s nearest competitor would be Thales’ SMART-L, an active array L-band/D-band radar that equips a number of European air defense ships, and South Korea’s Dokdo Class LHDs. Unlike the DBR, however, the ships carrying SMART-L variants use the conventional approach of completely separate radar systems, integrated by the ship’s combat system.

Another American competitor may also be emerging, via the AMDR radar competition for future DDG-51 Flight III Arleigh Burke Class ships – and possibly for fleet refits.

DBR: Contracts and Key Developments

 

FY 2019-Today

 

CVN-21 Drawings

CVN-21 Concept
(click for alternate view)
July 23/20: USS Jack H. Lucas Raytheon announced Tuesday that it has delivered the first AN/SPY-6(V)1 radar array to Huntington Ingalls for installation on the Navy’s future USS Jack H. Lucas guided-missile destroyer. “SPY-6 will change how the Navy conducts surface fleet operations,” said Capt. Jason Hall, program manager for Above-Water Sensors for the US Navy’s Program Executive Office for Integrated Warfare Systems in a press release. The first 14-foot-by-14-foor modular array was transported from Raytheon’s Radar Development Facility in Andover, Mass., to the Huntington Ingalls shipyard in Pascagoula, Miss., company officials said. In November 2019, Raytheon received a $97.3 million contract modification for integration and maintenance of the AN/SPY-6(V) air and missile defense radar system on Navy vessels.
July 14/20: Engineering Design Raytheon Integrated won a $9.7 million order for engineering design and component replacement parts to support the Dual Band Radar systems. According to Raytheon, the Dual Band Radar is the first radar system in the US Navy fleet capable of simultaneously operating over two frequency ranges (S-band and X-band), coordinated by a single resource manager. Work will take place in Massachusetts and Rhode Island.Expected completion date will be in November 2022.
November 26/19: Solid-State Switch Assembly Raytheon won a $14.8 million modification to exercise an option for the AN/SPY-1 radar solid-state switch assembly mod kit. The contract modification is for the production of solid-state switch assembly ordnance alteration kits for the Navy to support AEGIS modernization efforts. The heart of the AEGIS systems is an advanced, automatic detect and track, multifunctional phased-array radar, the AN/SPY-1. This high-powered radar is able to perform search, track and missile guidance functions simultaneously with a capability of over 100 targets. The AN/SPY-l radar system is the primary air and surface radar for the Aegis Combat System installed in the Ticonderoga (CG-47) and Arleigh Burke (DDG-51) Class warships. Work under the modification will take place in Massachusetts, Virginia and is expected to be finished by April 2023.
January 22/19: Engineering Services The Naval Sea Systems Command contracted Raytheon’s Integrated Defense System business with $38.1 million for engineering services for the Dual Band Radar (DBR) System. Raytheon’s DBR is capable of simultaneously operating over two frequency ranges (S-band and X-band), coordinated by a single resource manager. It does not require a dedicated operator or manned display consoles. Its separate band radar arrays provide extensive search, track and multiple missile illumination capacity. DBR also provides target illumination and uplink/downlink capabilities for SM-2 and Evolved SeaSparrow missiles. Per the terms of the contract, Raytheon conducts technical engineering services for DBR system upgrades, product support services, test equipment procurement, installation integration support, combat system integration testing, program management support, along with other studies and analysis. Work will be performed in Massachusetts, New Jersey, and Virginia. The company will utilize 2019 shipbuilding and conversion (Navy), and fiscal 2019 research, development, test, and evaluation funds for the task.

FY 2013

GAO report looks at past, present, and future difficulties.

CVN 78 timelines

CVN 78 delays
(click to view full)

Sept 30/13: Raytheon Co., Integrated Defense Systems, Tewksbury, MA, was awarded a not-to-exceed $7.2 million contract modification for hardware changes to the Dual Band Radar (DBR) and Common Array Power System, required to modify it for the Ford Class carriers’ power system interface. $3.6 million in FY 2011 shipbuilding & conversion funds are committed immediately.

Work will be performed in Andover, MA, (75%), and Sudbury, MA, (25%) and is expected to be complete by March 2015. Contract funds will not expire at the end of this fiscal year. The Naval Sea Systems Command, Washington, D.C., is the contracting activity (N00024-05-C-5346).

Sept 5/13: GAO Report. The new Ford Class carrier CVN 78 has seen costs rise to $12.8 billion, and the GAO looks at what’s driving the increased costs and risk. Issues with key sub-systems play a significant role, and the Dual-Band Radar is one of the main systems responsible. That isn’t really fair to the CVN-21 program, because the DDG 1000 Zumwalt Class “destroyer” program was supposed to handle DBR’s development and testing. The whole thing was dumped on CVN 78 part-way through, when the Navy cut the S-band SPY-4 radar from their battlecruiser.

GAO adds that “Technical deficiencies have slowed development, and key functions, including air traffic control capabilities [and the full voltage/power requirement], remain undemonstrated.” The Navy planned to resume land-based SPY-4 testing in FY 2012 using a final production unit, but contracting delays created the following plan:

* FY 2012: SPY-4 volume search radar testing supposed to resume.
* FY 2013: SPY-4 volume search radar testing resumes with prototype.
* Sept 2013: DBR integrated testing plan to be handed in.
* FY 2014: SPY-3 radar production version to finish land-based testing.
* FY 2014: SPY-4 volume search radar prototype to finish land-based testing.
* FY 2016: Shipboard testing of full DBR to begin, after the carrier is delivered.
* Feb 2017: DBR integrated testing expected to begin.

The Navy is still trying to define integrated testing’s exact scope, activities, and resources. Under the integrated testing approach, the DBR will be required to conduct near-simultaneous air traffic control and self-defense operations, using both the SPY-3 and SPY-4 radars while other antennas and arrays are emitting and receiving transmissions, and multiple loads are placed upon the ship’s power and cooling systems. Discovered incompatibilities, or required hardware changes, would be very expensive at that point.

Since 2008, DBR-related costs for the first-of-class Gerald R. Ford [CVN 78] have risen by 139.7%, from $201.9 – $484 million. In addition, late delivery and testing means that changes have to be made to a partially-complete ship, driving up costs in other areas. Late DBR deliveries have already forced Huntington Ingalls to cut open previously closed areas of the ship, in order to allow loading of equipment, and CVN 78 doesn’t have much margin to incorporate additional weight growth high up unless it redesigns other areas below. The US Navy contends that all future changes will take place within the components’ allotted space and weight, but the GAO doesn’t think they can possibly know that yet. Sources: GAO Report #GAO-13-396

June 3/13: Testing. Raytheon Integrated Defense Systems in Tewksbury, MA receives a not-to-exceed $23.8 million contract modification to support Phase II CVN 78 Dual Band Radar Test and Evaluation at the Raytheon Integrated Defense Systems Software Development Laboratory, and at the Wallops Island Engineering Test Center Land Based Test Site.

Work will be performed in Sudbury, MA and is expected to be completed by November 2014. $7.4 million is committed immediately using FY 2011 and 2012 budget lines, and $2.1 million will expire at the end of the current fiscal year, on Sept 30/13. US Naval Sea Systems Command, Washington Navy Yard, Washington, DC manages the contract (N00024-05-C-5346).

April 10/13: FY 2014 Budget. The President releases a proposed budget at last, the latest in modern memory. The Senate and House were already working on budgets in his absence, but the Pentagon’s submission is actually important to proceedings going forward. See ongoing DID coverage. The DBR isn’t its own program. It’s a part of the DDG 1000 program, and its R&D falls under PE 0604501N: Advanced Above Water Sensors, alongside AMDR, improvements to the legacy SPY-1 radars, etc.

This year’s R&D is just $18.9 million. It covers cost savings initiatives for adding Volume Search to the X-band SPY-3, future upgrades/technology insertion efforts, resolution of remaining hardware and software issues discovered during testing, and aircraft carrier interfaces to the DBR Battle Force Tactical Trainer (BFTT)/Cooperative Engagement Capability (CEC)/Surface Electronic Warfare Improvement Program (SEWIP).

Jan 17/13: DOT&E Testing Report. The Pentagon releases the FY 2012 Annual Report from its Office of the Director, Operational Test & Evaluation (DOT&E). DBR remains one of CVN 78 Gerald R. Ford’s “pacing items” for on-time delivery, and January 2013 was scheduled for air traffic control tests at Wallops Island, VA.

The Navy is reactivating the Engineering Development Model of the DBR’s SPY-4 Volume Search Radar at Wallops’ Combat System Center, and installing a production SPY-3 Multi-Functional Radar component, in order to support combat system integration and test for their new aircraft carrier class. The Pentagon’s Operation of Testing & Evaluation wants them to maintain a full DBR/ combat system setup, given the lessons of previous SSDS testing.

The Navy is reportedly considering plans for testing DBR at Wallops Island beyond 2015, but it isn’t clear if a Multi-Functional Radar and funding will be available. If it isn’t, the Navy will have problems testing upgrades and fixes, and ensuring lifecycle support after USS Gerald R. Ford’s expected delivery in 2015.

FY 2011 – 2012

June 26/12: Raytheon Integrated Defense Systems in Tewksbury, MA receives a maximum $38.6 million contract for non-recurring engineering, detail design, software development, and production planning efforts required to ensure that DBR is compatible with the Ford Class carriers’ emergency diesel generator, main turbine generator, and electrical distribution system specifications. The contract commits $19.3 million, with the rest available if needed.

Work will be performed in Sudbury, MA (53%); Tewksbury, MA (29%); Andover, MA (10%); Dallas, TX (6%); and Portsmouth, RI (2%), and is expected to be complete by April 2013. US Naval Sea Systems Command in Washington, DC manages the contract (N00024-05-C-5346).

A July 31/12 Raytheon release cites 2 U.S. Navy contracts, with a total value of $53.6 million. Raytheon will enhance the system’s software to optimize power efficiency, and ready the radar suite for the next phase of testing and evaluation.

March 30/12: GAO Report. The US GAO tables its “Assessments of Selected Weapon Programs” for 2012. The CVN 78 section covering the new Gerald R. Ford Class aircraft carriers has this to say about DBR:

“The dual-band radar also will not complete testing until after it is aboard the ship, which presents a risk if the system does not work as intended. The radar is required for ship installation starting in March 2013, but the program does not expect to complete testing the multifunction radar component until early 2013 or begin testing the volume-search radar component until May 2013. Some radar subsystems will not be tested until aboard the CVN 78. In addition, less dual-band radar testing has been done than anticipated because the Navy eliminated the volume-search component of the radar from the DDG 1000 Destroyer program [DID: vid. June 2/10], which the CVN 78 had planned to leverage. CVN 78 will now be the first ship to operate with this radar, but as of August 2011, the Navy had not yet planned for carrier-specific testing.

…In commenting on a draft of this assessment, the program noted that dual-band radar testing, while impacted by DDG 1000 decisions on volume-search radar, is fully funded and will complete land-based tests and begin shipboard testing prior to delivery.”

FY 2010

 

USN SDTS

SDTS [EDD-964]
(click to view full)

Aug 11/10: Raytheon Integrated Defense Systems in Tewksbury, MA receives a $36.1 million contract modification (N00024-05-C-5346) for mission systems equipment (MSE) that will be used on the US Navy’s Self Defense Test Ship [EDD-964], in support of the Anti-Air Warfare Self Defense Enterprise Test and Evaluation Master Plan. The equipment will support the DDG 1000 and CVN 78 classes of ships, in addition to follow-on operation test and evaluation efforts for the Evolved Sea Sparrow Missile (RIM-162 ESSM) and Surface Electronic Warfare Improvement Program (SEWIP).

Work will be performed in Andover, MA (58.7%); Portsmouth, RI (32%); Sudbury, MA (5.4%); Tewksbury, MA (2.7%); and San Diego, CA (1.2%). Work is expected to be completed by March 2013. US Naval Sea Systems Command in Washington, DC manages this contract.

Aug 10/10: Raytheon Integrated Defense Systems in Tewksbury, MA receives $59.4 million modification to previously awarded contract (N00024-05-C-5346) for CVN 78 dual-band radar (DBR) common array power system (CAPS) and common array cooling system (CACS) work. Raytheon will provide a factory assembly, then integrate and test one CAPS ship set, one CACS ship set, CVN 78 DBR unique components, and whole-life engineering products for the Gerald R. Ford’s radar. Unlike the DDG-1000, the Gerald Ford Class will retain the radar’s dual-band features.

“These efforts are required in order to meet the CVN 78 ship construction in-yard-need-dates at the receiving shipyard, to ensure that critical production schedules are maintained for the CVN 78 program.”

Work will be performed in Andover, MA (72.6%); Sudbury, MA (22%); Portsmouth, RI (2.3%); Tewksbury, MA (2.1%); and Falls Church, VA (1%), and is expected to be completed by November 2013. US Naval Sea Systems Command in Washington, DC.

Aug 10/10: An opinion from the Information Dissemination article Happy Thoughts and DDG-1000:

“I love Chris, and I don’t think anyone in the Navy deserved their star more than Jim Syring… but this Navy Times article is just a bit too much happy half-the-story for me. Here is how half the story gets told… The real reason the Navy is dropping the VSR on DDG-1000 is because the Navy intends to put… AMDR on the DDG-1000… because the timeline works out. The thing is the Navy can’t actually say this because there is no official AMDR program yet and the DDG-1000 isn’t supposed to be a ballistic missile defense ship – remember? This story in Navy Times is what it is because when it comes to US Navy shipbuilding, the Navy under CNO Roughead is never completely honest with the American people about what the Navy is doing. Sorry if the truth hurts.”

June 2/10: No DBR for Zumwalt. The US Defense Department announces that the S-band SPY-4 Volume Search Radar will be deleted from the DDG-1000’s DBR. Performance has met expectations, but cost increases reportedly forced the Navy into a cost/benefit decision. The Navy would not release numbers, but reports indicate possible savings of $100-200 million for each of the planned 3 ships.

The move will save weight and space by removing aperture, power, and cooling systems, and may create an opportunity for Raytheon’s SPY-3 to be upgraded for ballistic missile defense – or replaced by the winner of the BMD-capable AMDR dual-band radar competition. The X-band SPY-3 has reportedly exceeded technical expectations, and will receive upgrades to give it better volume search capability.

The full DBR will be retained on the USS Gerald R. Ford [CVN 78] aircraft carrier, as the SPY-4 replaces 2 air search radars and will be the primary air traffic control radar. No decision has been made for CVN 79 onward, however, and AMDR’s potential scalability may make it attractive there as well. Gannett’s Navy Times.

No DBR for Zumwalt

May 3/10: Testing. Raytheon announces that the DBR’s smaller-scale Engineering Development Model has simultaneously tracked a target using both X- and S-band radars, using a common radar suite controller. This first-ever event also demonstrated the system’s ability to perform automatic handover from S-band to X-band in precision-tracking mode, a key feature of the radar and its single track manager.

The test was performed at the Navy’s Engineering Test Center in Wallops Island, VA.

Dual tracking demo

March 31/10: Raytheon Integrated Defense Systems in Tewksbury, MA received a $9.8 million modification to previously awarded contract (N00024-05-C-5346) for CVN 78 dual-band radar common array power system and common array cooling system long-lead time materials and associated efforts. These materials, and associated engineering and management efforts, must be bought now, to ensure that critical production schedules are maintained for the CVN 78 program.

Work will be performed in Andover, MA (87.8%); Sudbury, MA (10.4%); Tewksbury, MA (0.9%); and Portsmouth, RI (0.9%), and is expected to be complete by September 2010. The Naval Sea Systems Command in Washington, DC manages these contracts.

March 30/10: GAO report. The US GAO audit office delivers its 8th annual “Defense Acquisitions: Assessments of Selected Weapon Programs report. With respect to DBR on the DDG-1000 and CVN-78 ship classes:

“The [DDG-1000’s AN/SPY-4] volume search radar has progressed in maturity and began testing with the multifunction radar in January 2009. However, program officials report that the tests were conducted without the volume search radar’s radome and at a lower voltage than required. The lead ship’s volume search radar will be installed in April 2013 – after the Navy has taken custody of the ship [DID: which means far less recourse from the prime contractor if things go wrong].

“…Testing of carrier specific dual band radar functionality [for CVN 78] is scheduled to conclude in fiscal year 2012. Dual band radar equipment will be delivered incrementally from fiscal years 2012 through 2014… Given the recent decision to truncate the DDG 1000 program, CVN 21 program officials stated that the dual band radar production line may be idle for up to 4 years before production begins for CVN 79 [and so adding] costs associated with restarting the production line.”

Nov 16/09: CDR. Raytheon and the U.S. Navy recently completed a critical design review (CDR) for the Dual Band Radar, with respect to the USS Gerald R. Ford [CVN 78]. DBR is currently in production for the Zumwalt Class destroyers, and the CDR verified that it also meets the critical operational requirements of the Ford class aircraft carriers.

Raytheon says that DBR’s modular, open architecture design meant that only minor modifications need to be made to accommodate specific differences between the 2 ship types, which makes a case for their ability to adapt the radar to a variety of naval surface combatants, if required. The firm is also competing in the USA’s AMDR program, where that kind of flexibility will be important. Raytheon release.

CDR for CVN

FY 2009

 

DBR testbed

DBR testbed, Wallops
(click to view full)

June 2009: Raytheon begins testing the first SPY-3 array at Andover, MA. Source.

April 23/09: +2 SPY-4 VSR. Raytheon Integrated Defense Systems in Tewksbury, MA received a $217 million cost plus fixed fee modification to a previously awarded contract (N00024-05-C-5346) for 2 Volume Search Radars (VSR). Lockheed Martin makes the antennas for these radars, but Raytheon is the lead contractor, and also makes the radars’ common back-end electronics and software.

These S-band naval radars will be mounted on one of the new DDG-1000 Zumwalt Class destroyers, and on the inaugural CVN-21 carrier USS Gerald R. Ford [CVN 78]. Work will be performed in Moorestown, NJ (95%) and Sudbury, MA (5%), and is to be complete by March 2013. The Naval Sea Systems Command in Washington, D.C. manages this contract.

April 7/09: Lightoff. Raytheon announces a successful full-power “lightoff” of both DBR radars. Both radiated at high power during testing at the Navy’s Engineering Test Center in Wallops Island, VA. Following this successful lightoff test, the radar suite will begin an extended period of operational performance testing.

March 30/09: GAO Report. The US government’s GAO audit office issues GAO-09-326SP: “Defense Acquisitions: Assessments of Selected Weapon Programs.” Lockheed Martin’s S-band volume search radar, and the Total Ship Computing Environment, are rated as immature technologies. The report adds:

“Land-based tests of the volume search radar prototype originally planned for before ship construction will not be completed until June 2009 – over 2 years later than planned… The Navy will not demonstrate a fully capable radar at its required power output until testing of the first production unit in 2011… installation [of the volume search radar) will occur in April 2013 – after the Navy has taken custody of the ship.”

January 2009: The SPY-3 and SPY-4 radars are installed together since January at the Wallops Island Engineering Center, on the Virginia coast. The radars soon begin tracking aircraft targets of opportunity, and aircraft test runs begin in summer 2009 and will continue into the fall. Source.

Dec 5/08: Raytheon Integrated Defense Systems in Tewksbury, MA received a $9 million modification to a previously awarded contract (N00024-05-C-5346) for one time engineering efforts. The purpose of this effort is to initiate the non-recurring engineering work required to make the selected Mission System Equipment (Dual Band Radar SPY-3 Array and REX; MK57 Vertical Launch System Electronics Module Controller Unit; Canister Electronic Units, and Total Ship Computing Environment) compatible with the Navy’s remote controlled Self Defense Test Ship (SDTS). The SDTS test will include the first missile firing with this advanced Mission System, against a difficult target set.

Raytheon will update selected Zumwalt Class Destroyer Mission Systems Equipment (MSE) for initial integration efforts at Wallops Island, VA, and follow-on installation on board the SDTS, in support of the Zumwalt TEMP (test and evaluation master plan). Work will be performed in Portsmouth RI (55%), Tewksbury, MA (25%), and Andover, MA (20%) and is expected to be complete by August 2009. All contract funds will expire at the end of the current fiscal year.

Dec 2/08: Production Readiness Review. Raytheon announces a successful production readiness review of the mission systems equipment (MSE) for the DDG-1000 program. This comprehensive review was the culmination of more than 90 separate design and production reviews, and afterward the Zumwalt program completed a total ship system production readiness review – the final formal review before ship construction begins.

The Zumwalt Class MSE includes the following major subsystems: the Total Ship Computing Environment; Dual Band Radar; the external communications suite; MK 57 Vertical Launching System; AN/SQQ-90 Integrated Undersea Warfare Combat System; the Electro-Optical/Infrared suite; the Identification Friend or Foe integrated sensor suite; and the Zumwalt ship control hardware, including an integrated bridge, navigation, EO surveillance, and engineering control system components.

FY 2006 – 2008

 

DDG-1000 Features

DDG-1000: key features
(click to view full)

July 23/08: DDG-1000: Just 3. Widespread reports indicate that the Navy is canceling the DDG-1000 program, capping construction at the 2 ships already ordered. A 3rd ship will eventually be ordered, but that ship is very likely to be the end of a program that once expected to field 32 ships.

Spring 2008: Testing. Raytheon’s SPY-3 X-Band completes at-sea testing off the California coast aboard the test ship Paul F. Foster, a former Spruance class destroyer. Source

Oct 1/07: Testing. Raytheon announces a milestone in advancing the final development of the company’s Dual Band Radar (DBR) for the Zumwalt Class destroyers. Raytheon IDS led the government-industry team in the successful installation of the Lockheed Martin Volume Search Radar (VSR) array at the Surface Warfare Engineering Facility at the Naval Base Ventura County, Port Hueneme, CA. After extensive testing, Raytheon will now integrate the VSR with the SPY-3 X-band Multi-Function Radar to form the DBR.

Another 5 months of extensive testing is set to begin, representing a critical step in testing the maturity of the technology prior to advancing to full system production. Raytheon’s X-band, SPY-3 has successfully completed extensive land-based and at-sea tests over the last 2 years. Raytheon release.

Sept 21/07: +2 DDG-1000 MSE. Raytheon Integrated Defense Systems in Tewksbury, Mass. received a $994.3 million cost-type modification to previously awarded contract (N00024-05-C-5346), covering key mission system equipment (MSE) production and engineering support services for the first 2 ships of the Zumwalt Class. The MSE includes the total ship computing environment infrastructure; acoustic sensor suite element – including the bow array sensor suite; dual band radar; electro-optic/infrared sensor; ship control system; identification of friend or foe; common array power and cooling systems; electronic module enclosures; and Mark 57 vertical launcher system. Raytheon is the mission systems integrator for the Zumwalt Class ships.

Work will be performed in Moorestown, NJ (21%); Portsmouth, RI (20%); Andover, MA (18%); Tewksbury, MA (17%); Marlborough, MA; St. Petersburg, FL; Ft. Wayne, IN (17%); and Sudbury, MA (7%), and is expected to be complete by December 2012. The MSE is being procured for the program executive office for ships [PMS-500].

Feb 12/07: Raytheon Integrated Defense Systems in Tewksbury, MA received a not-to-exceed $305.7 million cost-type modification to previously awarded contract (N00024-05-C-5346) for DDG 1000 Mission System Equipment (MSE) and engineering support services. Work will be performed in Tewksbury, MA (47%); Portsmouth, RI (28%); and Moorestown, NJ (25%), and is expected to be complete by September 2007.

This is part of the DDG 1000 Ship Systems Detailed Design and Integration effort, and the hardware involved includes: Total Ship’s Computing Environment Infrastructure; Acoustic Sensor Suite Element – including the Bow Array Sensor Suite; Dual Band Radar; Electro-Optic/ Infrared Sensor; Ship Control System; Identification of Friend or Foe; Common Array Power and Cooling Systems; Electronic Module Enclosures; and the Mark 57 PVLS Vertical Launcher System.

Oct 24/06: Testing. Raytheon reports successful on-schedule integration of Lockheed Martin’s engineering development model S-Band array with receiver, exciter, and signal/data processing equipment for the Volume Search Radar (VSR) portion of the DDG-1000 destroyer’s Dual Band Radar (DBR). Raytheon had already developed and tested the X-band component of the DBR, known as the AN/SPY-3. Now the challenge is to integrate them together.

May 25/06: Testing. Raytheon announces that the U.S. Navy’s first shipboard active phased array multifunction radar, Raytheon’s AN/SPY-3, has successfully participated in a series of at-sea tests, including the first time the radar has acquired and tracked a live controlled aircraft while at sea. Raytheon release.

FY 2000 – 2005

 

Sept 14/05: DDX CDR. The DD (X) Program’s Flag-Level Critical Design Review (CDR) is completed for the overall system design, marking the end of Phase III and a process advertised as being “on schedule and within 1% of stated budget.” See the release for more details, which include important information about the program.

Note that this effort included an unusually thorough approach of CDRs for each of 10 Engineering Development Models, representing a judgment that they have achieved enough have achieved both technical maturity and cost insight. The 10 EDMs were:

* Wave-Piercing Tumblehome Hull
* Infrared Mockups
* Composite Deckhouse and Apertures
* Dual Band Radar (DBR)
* Integrated Power System
* Total Ship Computing Environment (TSCE)
* Integrated Undersea Warfare System (IUSW)
* Peripheral Vertical Launching System (PVLS)
* Advanced Gun System (AGS)
* Autonomic Fire Suppression System (AFSS)

July 18/05: DDX. The National Team announces that they have successfully completed the Initial Critical Design Review for the DD (X) overall system design, allowing the program to pass on toward the Flag level review in September 2005 and enter detail design.

This was a DD (X) Phase III program event that addressed the total system’s design maturity, and overall progress made to date on DD (X) engineering-development models of hardware and software components that have already been built, tested and reviewed by the National Team and the Navy. Examples include the integrated deckhouse and apertures, total ship computing environment, dual-band radar system, integrated under-sea warfare system, MK 57 advanced vertical launching system, automated gun system and wave-piercing tumblehome hull.

Jan 14/05: Testing. DD (X) AN/SPY-3 Multi-Function Radar Passes Milestone B Criteria Tests. Raytheon announces that the Engineering Development Model (EDM) for the AN/SPY-3 X-Band Multi Function Radar has successfully completed its Milestone B test event at the Navy’s Wallops Island, VA test range. The test served to assess the radar’s environmental, detection, and tracking performance.

2003: VSR = S-Band. The US Navy changes the proposed VSR volume-search antenna from L-band to S-band, and makes Lockheed Martin the sub-contractor for the antenna.

2003: Lockheed Martin’s SBAR demonstrator begins operation in Moorestown, NJ.

2000: SBAR. Lockheed Martin begin pursuing the S-Band Advanced Radar (SBAR project), as an internal development effort.

Nov 1/99: Initial DBR development. Microwave Journal reports that Raytheon has received a 5-year, $140 million, section 845, cost-plus-award-fee contract from the US Navy for engineering and manufacturing development of the next-generation Multifunction Radar (MFR), which will equip future aircraft carriers and destroyers.

Additional Readings & Sources

DID appreciates the assistance of Raytheon IDS, and of Lockheed Martin’s Allan Croly, Director for Naval Radar, in the preparation of this article. Any mistakes are solely DID’s responsibility.

Background: The DBR Radar

* Raytheon – Naval Radars: Dual Band Radar (DBR)

* Raytheon, via WayBack – DDG 1000 Zumwalt Class Destroyer: Critical technologies

* Global Security – AN/SPY-3 Multi-Function Radar (MFR)

* Wikipedia – AN/SPY-3

* Lockheed Martin, via WayBack – S-band Advanced Radar (SBAR). Their current site focuses on their competing AMDR S-band solution.

Background: The Ships

* DII FOCUS – Design & Preparations Continue for the USA’s New CVN-21 Super-Carrier

* DII FOCUS – Dead Aim, Or Dead End? The USA’s DDG-1000 Zumwalt Class Program

Background: Other Radars

* DID Spotlight – AMDR Competition: The USA’s Next Dual-Band Radar. The dual-band AMDR was originally slated for the CG (X) cruiser, but will now equip a potential “Future Surface Combatant Ship” by 2015, and could have retrofit opportunities in existing DDG-51 destroyers. Raytheon, Lockheed Martin, and Northrop Grumman are all competing.

* Wikipedia – SMART-L. Made by Thales Nederland. These radars have been successfully tested for ballistic missile tracking.

Official Reports

* US GAO (Sept 5/13, #GAO-13-396) – Ford-Class Carriers: Lead Ship Testing and Reliability Shortfalls Will Limit Initial Fleet Capabilities. The DBR is a contributor to this situation.

News & Views

* DID – Elec Tricks: Turning AESA Radars Into Broadband Comlinks

* DID – Supersonic SIGINT: Will F-35, F-22 Also Play EW Role?. Their AESA active electronically-scanned array radars are the key technology; a technology shared by the DBR.

* Information Dissemination (Aug 10/10) – Happy Thoughts and DDG-1000. “The real reason the Navy is dropping the VSR on DDG-1000 is because the Navy intends to put… AMDR on the DDG-1000…”

One Source: Hundreds of programs; Thousands of links, photos, and analyses

DII brings a complete collection of articles with original reporting and research, and expert analyses of events to your desktop – no need for multiple modules, or complex subscriptions. All supporting documents, links, & appendices accompany each article.

Benefits

  • Save time
  • Eliminate your blind spots
  • Get the big picture, quickly
  • Keep up with the important facts
  • Stay on top of your projects or your competitors

Features

  • Coverage of procurement and doctrine issues
  • Timeline of past and future program events
  • Comprehensive links to other useful resources